- Услуги
- Цена и срок
- О компании
- Контакты
- Способы оплаты
- Гарантии
- Отзывы
- Вакансии
- Блог
- Справочник
- Заказать консультацию
То, в какой именно точке на эффективной границе вы будете находиться (т. е. какова эффективная КСП), является функцией вашего собственного неприятия риска, по крайней мере в соответствии с моделью Марковица. Однако есть оптимальная точка на эффективной границе, и с помощью математических методов можно найти эту точку.
Если вы выберете КСП с наивысшим средним геометрическим HPR, то достигнете оптимальной КСП! Мы можем рассчитать среднее геометрическое из среднего арифметического HPR и стандартного отклонения HPR (обе эти величины у нас уже есть, так как они являются осями Х и Y модели Марковица).Уравнения (1.16, а) и (1.16, б) дают нам формулу для оценочного среднего геометрического EGM (estimated geometric mean). Данный расчет очень близок (обычно до четвертого или пятого знака после запятой) к реальному среднему геометрическому, поэтому можно использовать оценочное среднее геометрическое вместо реального среднего геометрического:
или EGM = (AHPR ^ 2 – SD ^ 2) ^ (1/2), (1.16, а)
EGM = (AHPR ^ 2 – V) ^ (1/2), (1.16, б)
где EGM — оценочное среднее геометрическое;
AHPR — среднее арифметическое HPR, или координата, соответствующая до- ходу по портфелю;
SD — стандартное отклонение HPR, или координата, соответствующая риску по портфелю;
V — дисперсия HPR, равная SD ^ 2.
Обе формы уравнения (1.16) эквивалентны.
При КСП с наивысшим средним геометрическим рост стоимости портфеля будет максимальным; более того, данная КСП позволит достичь определенного уровня ба- ланса за минимальное время.