- Услуги
- Цена и срок
- О компании
- Контакты
- Способы оплаты
- Гарантии
- Отзывы
- Вакансии
- Блог
- Справочник
- Заказать консультацию
Методы определения и учета погрешностей измерений используются для того, чтобы:
В процессе определения и учета погрешностей оцениваются:
Точечная оценка параметра (математического ожидания или среднеквадратического отклонения) – это оценка параметра, которая может быть выражена одним числом.
Закон распределения значений точечной оценки будет зависеть также от оцениваемого параметра и от числа испытаний (экспериментов).
Точечная оценка бывает следующих видов:
Несмещенная точечная оценка – это оценка параметра погрешности, математическое ожидание которой равно этому параметру.
Состоятельная точечная оценка – это оценка, которая при увеличении числа испытаний стремится к значению параметра, подвергающегося оценке.
Основные методы определения оценок:
Метод максимального правдоподобия основывается на идее, что сведения о действительном значении измеряемой величины и рассеивании результатов измерений, полученные путем многократных наблюдений, содержатся в ряде наблюдений.
Метод максимального правдоподобия состоит в поиске оценок, при которых функция правдоподобия проходит через свой максимум.
Если случайные погрешности распределены по нормальному закону распределения, то оценка максимального правдоподобия для истинного значения представляет собой среднее арифметическое результатов наблюдений, а оценка дисперсии является средним арифметическим квадратов отклонений значений от математического ожидания.
Преимущества оценок максимального правдоподобия заключается в том, что данные оценки:
Метод наименьших квадратов состоит в том, что из определенного класса оценок берут ту оценку, у которой минимальная дисперсия (самую эффективную).
Из всех линейных оценок действительного значения, где присутствуют некоторые постоянные, только среднее арифметическое сводит к наименьшему значению дисперсии. В связи с этим при условии распределения значений случайных погрешностей по нормальному закону распределения оценки, полученные с использованием метода наименьших квадратов, идентичны оценкам максимального правдоподобия.
Оценка параметров с помощью интервалов проводится посредством нахождения доверительных интервалов, в пределах которых с заданными вероятностями располагаются действительные значения оцениваемых параметров.
При достаточно большом количестве испытаний доверительный интервал существенно уменьшается. Если увеличивается число испытаний, то допустимо увеличить число доверительных интервалов.
Обнаружение грубых погрешностей.
Промахи и грубые погрешности могут появляться из—за грубых ошибок в процессе проведения измерения, технической неисправности средства измерения, неожиданного изменения внешних условий. Для того чтобы исключить грубые погрешности, рекомендуется до начала измерений приближенно определить значение измеряемой величины.
В случае, если при проведении измерений выясняется, что результат отдельного наблюдения сильно отличается от других полученных результатов, нужно обязательно установить причины такого отличия.
Результаты, полученные с резким отличием, можно отбросить и повторно измерить данную величину. Однако в некоторых случаях отбрасывание таких результатов может вызвать ощутимое искажение рассеивания ряда измерений. В связи с этим рекомендуется не отбрасывать необдуманно отличающиеся результаты, а дополнять их результатами повторных измерений.
Общий метод проверки статистических гипотез позволяет выяснить, присутствует ли в данном результате измерений грубая погрешность.